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Abstract. Retinal vessel characteristics serve as crucial biomarkers for
screening and diagnosing various diseases. Retinal vessel segmentation,
particularly arteriovenous (A/V) segmentation, is a key step in enabling
Al-assisted disease screening and diagnosis. Fundus photography, a non-
invasive retinal imaging technique, is widely accessible and cost-effective.
To advance Al applications in screening and diagnosing conditions such
as diabetes and cardiovascular diseases, we collaborated with Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2025
to launch the Generalized Analysis of Vessels in Eye (GAVE) Challenge.
This initiative provides a dataset with expert annotations for three re-
search tasks: vessel segmentation, A/V segmentation, and quantitative
biomarker measurement in fundus images. In the annotation process of
the dataset, the fluorescein fundus angiography(FFA) paired with color
fundus photos are introduced, which can provide a clearer and more accu-
rate annotation reference than relying on color fundus photos alone. This
is the first and biggest dataset to incorporate paired FFA into the vascu-
lar annotation of the artery/vein and provides arteriovenous ratio (AVR)
parameter annotations. This paper describes the released dataset of 150
color fundus images with corresponding annotations, baseline methods
for the three subtasks, and evaluation protocols. The GAVE Challenge is
accessible at https://aistudio.baidu.com/competition/detail/1315.

Keywords: Retinal vessel segmentation - Artery/Vein Segmentation -
Biomarker - GAVE Challenge.
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1 Introduction

Color fundus photography offers an efficient non-invasive approach for observ-
ing the human retinal vasculature[5]. Alterations in the retinal vessels are as-
sociated with numerous diseases: arterial narrowing indicates hypertension[I7],
while venous dilation suggests diabetic retinopathy[I5]. Diabetes and cardiovas-
cular diseases impose a substantial global healthcare burden[18]. Deep learning
models enables disease screening and diagnosis assistance using color fundus
photographs|I421], where accurate vascular segmentation and measurement of
vascular morphological parameters (e.g., vessel diameter[§], AVR[I]) are critical
steps[I0]. Because different artery/vein changes represent distinct pathologies,
the precise segmentation of vessels into arteries and veins is important, which
enables biomarkers quantification, enhancing the models prediction performance
and interpretability[4120]9].

Currently, the number of publicly available color fundus arteriovenous vessel
segmentation datasets is limited, like DRIVE[13], HRF[3], LES-AV[12], RITE[7],
less than 50 color fundus images. Moreover, the manual annotation process is
fraught with uncertainties[I9], especially when annotators rely solely on color
fundus photographs to identify and annotate vessels. These challenges have
severely restricted the development of related fields. To advance research on
arteriovenous vessel segmentation and index measurement, we in collaboration
with MICCAI 2025, organized the GAVE Challenge. The aim is to provide a rich
and accurately annotated dataset of color fundus photographs for arteriovenous
annotation, which can be used for research on vessel segmentation, arteriovenous
segmentation, and vascular biomarkers measurement. This paper primarily intro-
duces the 150 color fundus photographs dataset released in the GAVE Challenge,
including three subtasks (vessel segmentation, arteriovenous segmentation, and
AVR measurement), and the method of using color fundus photos paired with
FFA for labeling is described in detail. Then we provide baselines and elaborate
on the evaluation methods.

2 Dataset

The 150 color fundus photographs are derived from a dataset collected during
a previous fundus disease study at Shenzhen Eye Hospital in China. This study
spanned six years and included individuals aged 18-60 years without obvious
ocular pathologies. From the original dataset, a subset featuring high-quality
imaging and comprehensive data modalities was carefully selected to serve as
the annotated dataset. Each data instance encompasses a color fundus photo-
graph of one subject’s eye, a FFA image depicting the complete arterial filling of
the corresponding eye, and at least one FFA image demonstrating the complete
filling of all fundus blood vessels of the same eye. The objective is to utilize the
FFA images in these two states to facilitate the discrimination and labeling of
arteries and veins in the fundus. In contrast to color fundus photographs, FFA
images exhibit superior imaging quality. They can clearly image the boundary
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of vessel, the morphology of arterioles and venule, and the relative positional
relationships among near vessels. In addition, the principle underlying fluores-
cein angiography allows physicians to acquire color fundus photographs with
exclusive arterial filling and those with the complete filling of both arteries and
veins during the angiography procedure. This approach, compared to relying
solely on color fundus photographs, enables annotating physicians to more pre-
cisely and effortlessly distinguish arterial and venous vessels, particularly in the
case of minute vessels and those regions that are challenging to differentiate
due to imaging - related factors. The images were acquired using a variety of
ophthalmic devices, including the Topcon NW400, Canon CR - 2 AF, KeHe
VX - 10i, Zeiss VIUCAM200, and other commonly employed fundus cameras in
ophthalmic hospitals. This study was approved by Institutional Review Board
of Shenzhen Eye Hospital (Approval 2024KYPJ013) and adhered to the Dec-
laration of Helsinki. The original acquired images were stored in JPG format
at a resolution of 1536x1024. The dataset images are saved in PNG format at
the same resolution of 1536x1024. An illustrative example of one such image is
presented in Fig.

(@) (k) (©

Fig. 1. Illustration of color fundus photography and paired FFA angiography process.
(a) represents the color fundus photo, (b) represents the FFA images with filled arteries,
and (c) represents the FFA image with both arteries and veins filled

The GAVE dataset provides segmentation masks for retinal vessels in color
fundus images, arterial and venous classification labels, and average AVR mea-
surement values for the top 4 vessels around the optic disc. The manual an-
notation team consists of one quality control doctor with higher seniority, three
primary annotating doctors, and five image annotation support personnel. These
150 images were randomly divided into three subsets, each annotated by one doc-
tor, supported by assistants and supervised throughout by the quality control
doctor. During annotation, the three annotating doctors used the color fundus
images and FFA images in each case to assist and followed a unified annotation
standard and specification. Specifically, each image included color fundus images,
corresponding FFA images with arteries filling and the FFA with both arteries
and veins filled , and a pre-segmented mask using a fine-tuned pre-trained deep
learning model. The FFA images and the pre-segmented mask were used to help
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the doctors make judgments and annotations. The annotating doctors first ob-
served the FFA filled arteries images and those with both arteries and veins filled,
identified venous vessels, especially the tiny vessels at the ends, the interlaced
vessels, and the parts that are difficult to observe and distinguish in the color
fundus images. For some occlusions due to imaging or lesions, the FFA images
could also assist the doctors in identifying and annotating the vessels. Then the
annotating doctors used the annotation tools to draw the edges of the venous
vessels and obtained the vessel masks by filling the contours. The same process
was completed for the annotation of arteries with the cooperation of annotat-
ing doctors and annotation support personnel, and the doctors supervised and
checked the annotations. The separately annotated arterial and venous vessel
masks were merged and processed further after being checked and verified by
the doctors. For overlapping areas of arterial and venous vessels, separate anno-
tations were made to ensure the continuity of the single class vessel masks, and
the overlapping parts were handled separately in the final annotation results. In
the final segmentation masks, red represents arteries, blue represents veins, and
green represents the overlapping parts of the vessels, we present three examples

in Fig.

--

Fig.2. Three examples of color fundus images with their corresponding pixel-wise
manual annotations in GAVE dataset.

The data on the ratio of arteriovenous diameters is based on the labels made
by doctors on the arteriovenous vessels and the optic disc. By using both labels,
the diameters of the arteriovenous vessels around the optic disc are obtained, and
the diameters of the largest arteries and veins are calculated. Finally, the AVR
of the top four groups of vessels are calculated as the final reference standard.
An example optic disk label and its corresponding AVR annotation are shown in
Fig.|3] Finally, in the released dataset, 150 color fundus photos and corresponding
arteriovenous labels, AVR measurements are included. The 150 images in the
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dataset will be randomly divided into three groups. In the preliminary stage, 50
labeled images will be provided for model training, another 50 labeled images
will be used for validation, and the remaining 50 images will be used for the final
test.

Fig. 3. Measurment process of AVR. Figure (a) presents manually labeled optic disc
contour with 1 pixel width, (b) and (c) show arterial diameter section surface and
venous diameter section obtained based on optic disc contour and vascular labeling,
respectively. Numbers around bounding box represent the number of pixels of the blood
caliber width.

3 Baseline

We design a baseline model for all three challenge sub-tasks. Inspired by [I1],
we propose a U-shaped model with recursive framework for vessel segmentation
and arteriovenous segmentation simultaneously. As shown in Fig.[4] we introduce
dense skip-connection and Vision Transformer(ViT) for better multiscale repre-
sentative fusion and enhancing global context extraction, respectively. Through
dense skip links, patches of different sizes from other layers can be aggregated
together to serve as supplementary, thereby reducing information loss. To com-
pensate for the limited receptive fields of convolutional layers, we incorporate
a pre-trained ViT module in the deepest network stage to capture long-range
dependencies. The recursive framework allows the model to continually improve
the segmentation results of the previous model by correcting classification errors
in the input results; we set the recursion depth 7 in experiment. During train-
ing, the weight of the loss of the first layer is the highest because the subsequent
iterations are all based on its results. A decaying weight scheme is applied to the
loss terms of deeper network layers during iterative training, which the weight
equals to the ratio of its layer index to the cumulative sum of preceding layers.

The baseline is implemented in PyTorch and trained on an NVIDIA A6000
GPU (48GB memory). Input images are resized to 70% of their original dimen-
sions to accommodate GPU memory constraints. We use pre-processing follow-
ing [11]. For GAVE dataset, 50 images were used for training and 50 for testing.
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During training, we use an Adam optimizer with learning rate = 10~* and early
stopping.

Following clinical practice experience, the diameters of the four largest vessels
around the optic disc are used as the source for calculating the AVR. To measure
AVR, we first use the pre-trained optic disc segmentation model [6] to segment
the color fundus photo to obtain the contour of the optic disc, and then process
it with the segmentation results of the second task to obtain the artery and vein
diameters at the boundary of the optic disc, and calculate the average diameter
of the top 4 arteries and veins to obtain the final AVR. The codes of our baseline
are available at https://github.com/1iuzw20/GAVE.
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4 Evaluation

4.1 Task 1: Retinal Vessel Segmentation

To measure the accuracy of the segmentation region, we use the Dice Similarity
Coefficient(DSC), which is a commonly used metric for evaluating segmentation
tasks. DSC = %, where X represents the set of segmented target pixels
in the ground truth, Y represents the set of segmented pixels in the prediction
result, | X NY| denotes the number of pixels in the intersection between X and Y,
|X| and |Y'| denote the number of elements (i.e., pixels) in X and Y, respectively.
To assess the accuracy of the segmentation results on vascular boundaries, we

use the 95% Hausdorff Distance (HD95) as the evaluation metric. HD95(X,Y) =
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max {sup,c x infyey d(z,y), sup,cy infyex d(z, y)}%%, where X and Y denote
boundary points sets of the groundtruth and the prediction, respectively. d(x, y)
is the Euclidean distance between the points ¢ € X and y € Y. inf,cy d(z,y)
represents the minimum distance from the point x to the set Y. In addition,
to evaluate tubular structure segmentation, such as blood vessels, the centerline
Dice (clDice) index [16] is applied to assess topological connectivity. Our baseline
achieves DSC of 0.7369, HD95 of 2.2361 and clDice of 0.2611. When designing the
scoring calculation, we set the proportions of Dice score, HD95 score, and clDice
score to 0.4, 0.3, and 0.3 according to the importance of metrics, respectively.

3
SCOrCtaSkl =10 x (04 x DSC + 0.3 x m

+0.3 x chicc) (1)

4.2 Task 2: Artery/Vein Segmentation

For artery/vein segmentation, we also choose DSC. Three evaluation indicators
from different perspectives of vascular classification attributes are selected, Sen =
TPorN: SPe = 7ntrp: Acc = ppit i, where TP, TN, FP, and FN
denote true positive, true negative, false positive and false negative, respectively.
Inspired by [2], we used infeasible (INF) and correct (COR) path percentage
to evaluate the topological connectivity of the A/V segmentation map. When
calculating INF and COR, the algorithm randomly samples two points on the
real centerline and finds their nearest corresponding points in the predicted mask.
It then compares whether the shortest path lengths between the two pairs are
consistent (allowing for a 10% error) to evaluate the topological connectivity of
the predicted mask. If the two points are not connected in the prediction, it is
recorded as an infeasible path. If the path length is significantly deviated(more
than 10%), it is judged as an incorrect connection; otherwise, it is considered a
correct connection. Because too long paths indicate missing links, whereas too
short ones indicate hallucinated connections. We randomly sample 100 paths
during the testing phase. Finally, by statistically analyzing the proportions of
the three types of paths (infeasible, shorter/larger, and correct), the topological
consistency of the prediction results is quantified. The higher value of COR and
the lower value of INF implies better performance. The results of each specific
evaluation metric are shown in Table [I] When designing the score calculation,
we set the proportions of the segmentation evaluation indicators, classification
evaluation indicators, and topological connectivity evaluation indicators in the
total score to 0.3, 0.3, and 0.4, respectively.

Scoreg,sks = 10 X (0.3 x DSC + 0.1 x (Sen + Spe + Acc)
+0.2 x (1—INF) + 0.2 x COR) (2)

4.3 Task 3: Arteriovenous Ratio Automatic Measurement

In order to assess the performance of regression task, We adopt the Mean Ab-
solute Error (MAE), which is a commonly used metric for evaluating regression
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Table 1. Evaluation results for artery and vein segmentation.

| DSC | Sen | Spe | Acc |INF || COR
0.6009‘0.4981‘0,9952‘0.9807‘0.8478‘0.1511

Artery

Vein [0.7383]0.7448|0.9879|0.9775|0.7048]0.2924

tasks. We also used the Symmetric Mean Absolute Percentage Error (SMAPE)

to calculate the difference between the predicted values and the target values.
MAE = L 3" | |y; — §;|, SMAPE = 1073% S %, where n is the num-
ber of samples, y; is the groundtruth value, and g; is the predicted value. The
baseline achieves MAE of 0.2511 and SMAPE of 34.02%. When designing the
score calculation, we set the ratio of the MAE score to the SMAPE score to 0.5

and 0.5 respectively.

0.37665 SMAPE
I ) 12
X 037665 3 MAE T 00 < ( ) )

Based on the evaluation criteria, our baseline achieves a score of 5.4605 for the
vessel segmentation task, a score of 5.4918 for the artery vein segmentation
task and a score of 7.1495 for the final AVR measurement task. Arteriovenous
segmentation has a higher level of task complexity and clinical value. Therefore,
when calculating the total score of the task, we give task 2 a higher weight:

Scoregasks = 10 x (0.5

Score;ound = 0.3 X Scoreaski + 0.4 X Scoregaska + 0.3 X Scoreasks (4)

where round € {preliminary, final}. Based on the task total score formula, the
score of our baseline model on the preliminary set is 5.9797. Since the leaderboard
of the preliminary competition is visible to all players, players can adjust the
model parameters or strategies to obtain the best prediction on the preliminary
set. To prevent players’ results from overfitting on the preliminary dataset and
obtaining higher scores, we assign a lower weight to the preliminary score when
calculating the total challenge score. Therefore, the total score is:

Scoregotal = 0.3 X Scorepreliminary + 0.7 X Scoregnal (5)

5 Conclusion

In this article, we introduce the GAVE challenge at MICCAT 2025. We designed
three subtasks based on the new GAVE dataset, including color fundus image
vessel segmentation, arteriovenous segmentation, and automatic measurement
of the AVR. In the dataset annotation process, we innovatively introduced two
paired FFA images for accurate annotation, which represented the state of FFA
images arteries filled and both arteries and veins filled, respectively. To the best
of our knowledge, this is the first and largest vessel segmentation dataset which
is annotated in this way and provides AVR labels as well. We further proposed
a novel recursive framework and measurement method as baseline for GAVE
dataset. Finally, we illustrate specific metrics for the evaluation of three tasks.
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